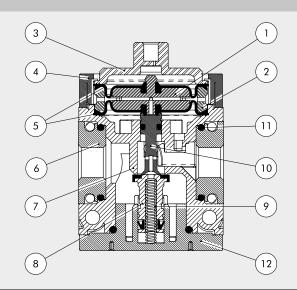
SUNTESI: PILOT OPERATED REGULATOR

The pilot operated regulator can adjust pressure remotely via a pneumatic command.

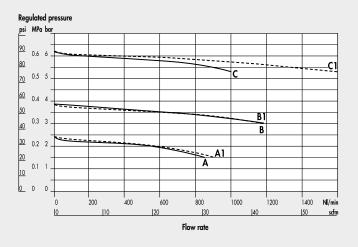
. The two rolling diaphragms offer several advantages:

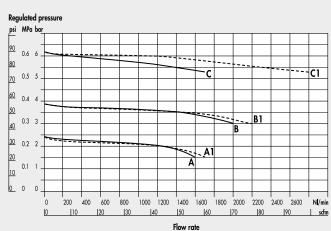
- increased stroke, which allows greater opening of the valve and hence increased flow rate;
- reduced dynamic and pickup friction, which results in increased response speed and high sensitivity;
- high precision in maintaining the set pressure, both with variable flow rates and different inlet pressures.


The design features the same construction characteristics as those used for a standard regulator, so the advantages are the same, namely: compensation of the regulated pressure varies with the upstream pressure; presence of a relieving valve and downstream pressure quick relieving.

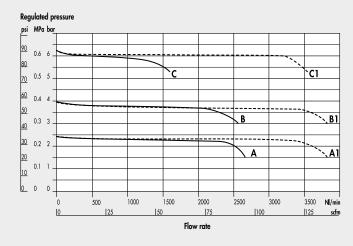
TECHNICAL DATA			REG SY1			REG	SY2	
Threaded port		1/8"	1/4"	3/8"	3/8"	1/2"	3/4"	1"
Max. inlet pressure	bar		15			1	3	
·	MPa		1.5			1.	3	
	psi		217			18	88	
Flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 0.5 bar (0.05 MPa; 7 psi)	NI/min	900	1700	3300	5500	5500	7300	
(inlet pressure 10 bar)	scfm	32	60	116	194	194	258	
Flow rate at 6.3 bar (0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi)	NI/min	1000	2800	3550	6800	6800	7700	
(inlet pressure 10 bar)	scfm	53	99	120	240	240	272	
Relief valve flow rate at 6.3 bar (0.63 MPa; 91 psi)	NI/min	70 100						
	scfm		2.5			3.	5	
Min/max temperature at 10 bar; 1 MPa; 145 psi	°C	From -10 to +50 From -10 to +50						
Full outflow with zero inlet pressure		Included						
Upstream pressure compensation		Included, via balanced valve						
Weight	g	149	144	135	456	429	425	413
Fluid		Compressed air or other inert gases						
Mounting position		In any position						
Additional air take-off, for pressure gauges or fittings		1/8", front and rear			1/4", front and rear			
Additional air take-off flow rate at 6.3 bar		500		1400				
(0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi)		18		50				
Wall fixing screws		No. 2 M4 screws		No. 2 M5 screws				
Notes on use		The pressure must always be set upwards.						

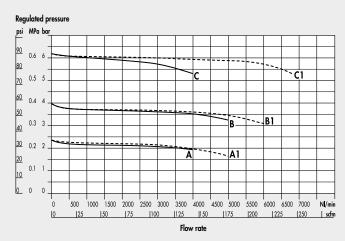
COMPONENTS

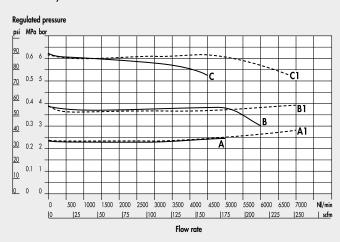

- Anodized aluminium plate
- ② Anodized aluminium diaphragm washer
- Anodized aluminium upper cap
 Technopolymer flange
- Rolling diáphragm (5)
- (a) IN/OUT bushing made of OT58 nickel-plated brass or passivated aluminium for 3/4" 1"
- 7 Technopolymer regulator body
- OT58 brass valve, with NBR vulcanized gasket
- Stainless steel valve spring
- Technopolymer rod
- NBR o-ring gasket
- Technopolymer plug

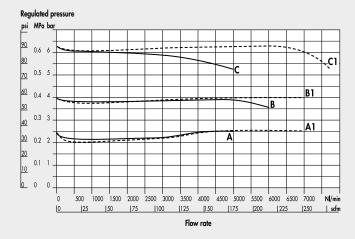


FLOW CHARTS


REG PIL Syntesi® SY1 1/8"

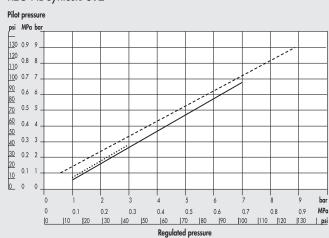

REG PIL Syntesi® SY1 1/4"


REG PIL Syntesi® SY1 3/8"


REG PIL Syntesi® SY2 3/8"

REG PIL Syntesi® **SY2** 1/2"

REG PIL Syntesi® SY2 3/4" - 1"


A1 = P ln 10 bar - P Out 2.5 bar B1 = P ln 10 bar - P Out 4 bar C1 = P ln 10 bar - P Out 6.3 bar

PILOTING CURVES

Pilot pressure psi MPa bor 130 09 9 120 0.8 8 8 1100 0.7 7 90 0.6 6 80 120 0.5 5 5 120 120 0.8 120 0.0 1 1 2 3 4 5 6 7 8 9 bor 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 MPa

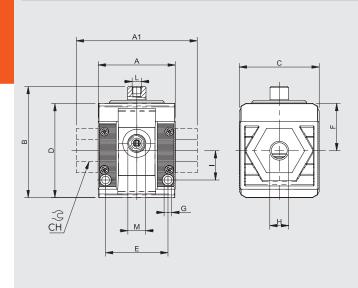
[60

REG PIL Syntesi® **SY2**

..... P In 4 bar

[10 **[**20 **[**30 **[**40 **[**50

_____ P In 7 bar


|100 |110 |120 |130 | **psi**

J70 J80 J90

Regulated pressure

_____ P In 10 bar

DIMENSIONS

	SIZE 1	SIZE 2			
H (threaded port)	1/8" 1/4" 3/8"	3/8" 1/2" 3/4" 1"			
A	42	60.5			
A1	44	95 95			
В	63	81			
С	44	61			
CH	-	32 36			
D	51.5	70.5			
E	33.5	47.5			
F	25.8	38.2			
G	Hole for M4 screws	Hole for M5 screws			
I	16	22.5			
L (pilot)	M5	M5			
M (pressure gauge port	1/8"	1/4″			
or air takes-off)					

KEY TO CODES

56	1	1	R	00	1
SYNTESI	SIZE	THREADED INPUT CONNECTION	ELEMENT	SETTING RANGE	THREADED OUTPUT CONNECTION
56 Syntesi 5X Syntesi anti-corrosion	1 Size 1 2 Size 2	 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port 0 Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port 	R Pressure regulator	00 Pilot operated	0 Without bushing 1 1/8" port 2 1/4" port 3 3/8" port 0 Without bushing 3 3/8" port 4 1/2" port 5 3/4" port 6 1" port

PURCHASE ORDER CODES HAVING A MORE FREQUENT USE						
PURCHASE ORDER CODES HAVING A MORE FR N.B. Besides the below mentioned codes, you can order elected Code Description Syntesi⊚ SY1 PILOT OPERATED REGULATOR 5610R000 REG PIL SY1 without bushings 5611R001 REG PIL SY1 1/8 5612R002 REG PIL SY1 1/4 5613R003 REG PIL SY1 3/8		NOTE Anti-corrosion version 5X Example 5X11R001 REG PIL SY1 1/8 anti-corrosion				
NOTES						